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Recent developments of rational strategies for the design of antiviral therapies,
including monoclonal antibodies (mAbs), have naturally relied extensively on
available viral structural information. As new strategies continue to be devel-
oped, it is equally important to continue to refine our understanding and
interpretation of viral structural data. There are known limitations to the tradi-
tional (Caspar–Klug) theory for describing virus capsid structures that involves
subdividing a capsid into triangular subunits. In this context, we describe a
more general polyhedral framework for describing virus capsid structures that
is able to account for many of these limitations, including a more thorough
characterization of intersubunit interfaces. Additionally, our use of pentagonal
subunits instead of triangular ones accounts for the intrinsic chirality observed
in all capsids. In conjunction with the existing theory, the framework presented
here provides a more complete picture of a capsid’s structure and therefore can
help contribute to the development of more effective antiviral strategies.

Understanding Viral Capsid Structural Information
The widespread availability of viral capsid structural information has played a key role in the
rational engineering of novel antiviral agents. For example, recent reports have successfully
demonstrated the design of monoclonal antibodies (mAbs) that target linear and conforma-
tional viral epitopes in order to neutralize viruses such as dengue and influenza [1,2]. These
structure-guided approaches to effective mAb design inherently rely on the accurate determi-
nation of the atomic coordinates of viral capsid epitope residues using techniques such as X-ray
crystallography and three-dimensional electron cryo-microscopy (cryo-EM) [3–8]. As research-
ers continue to leverage this existing structural knowledge to further develop new antiviral
strategies, it is equally important to continue to refine our understanding and interpretation of
viral structural data. Our current understanding of this information is naturally based deeply in
the history of past approaches for describing virus capsid structures. In 1956, Watson and
Crick proposed that virus capsids are built from a number of identical coat proteins (or subunits)
that arrange themselves according to cubic symmetry [9]. This hypothesis was based on the
observation that it would require quite a large amount of genetic material to code for a complete
viral capsid, so it would be much more efficient if the capsid were composed of many identical
smaller subunits. Furthermore, of the three types of cubic symmetry – tetrahedral, octahedral,
and icosahedral – it was thought that the latter would be most commonly observed in such
capsid structures. This is because an icosahedron would enable a capsid containing individual
viral subunits of a given size to enclose the largest possible volume [10]. As more viral capsid
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structures were solved, it became clear that icosahedral symmetry does indeed dominate
[11,12]. Of course, the requirement of icosahedral symmetry is not a rule for all virus structures
as there are several viruses that do not exhibit it [12].

A capsid structure possessing icosahedral symmetry requires 6 five-fold symmetry axes, 10
three-fold axes, and 15 two-fold axes. For example, in a regular icosahedron, a five-fold axis
passes through each vertex, a three-fold axis through each face, and a two-fold axis through
each edge. If a capsid were to be composed of strictly identical subunits, the maximum number
of possible subunits would be 60, where each icosahedron face is decorated with three
subunits symmetrically about the three-fold axis. However, the evidence of structures con-
taining more than 60 subunits that furthermore are not necessarily all identical led Caspar and
Klug to formulate their theory of quasi-equivalence, which allowed overall icosahedral symme-
try to be preserved while relaxing the constraint of strict equivalence [10]. This theory introduced
the concept of the triangulation number T=H2+HK+K2, where (H, K) are any pair of nonnegative
integers. This number refers to the number of smaller triangles (or subunits) that are present in
the full assembly.

As more capsid structures were solved, it became clear that the Caspar–Klug rules and the
notion of triangulation number alone do not account for all observed icosahedral capsids [12].
For example, icosahedral capsids consisting of 120 identical subunits in theory should corre-
spond to a triangulation number of two (T=2). However, this value of T is not permitted since
there are no two integers (H, K) that solve H2+HK+K2=2. This type of structure is commonly
observed in dsRNA viruses, including the fungal L-A virus and others [13,14]. Other notable
exceptions to the triangulation number rules include viruses of the papilloma-polyoma type,
whose capsids consist of 360 subunits, corresponding to the forbidden T=6 case [15]. High-
resolution structural studies show that these 360 subunits are organized as 72 pentamers
located on a T=7d icosahedral lattice [15,16]. This is not true T=7 symmetry, as that would
require 420 subunits organized as 60 hexamers and 12 pentamers [17]. Therefore, this
observed structure of only pentameric capsomers cannot be explained in terms of triangulation
numbers and traditional Caspar–Klug theory.

A few previous efforts have been made to provide explanations for these exceptions to the
traditional Caspar–Klug theory. For example, a recent extension of the Caspar–Klug theory is
able to approximately predict in general the locations of viral subunits on a spherical icosahedral
lattice [18]. In contrast to a lattice-based approach, an alternative polyhedral approach would
be valuable since the properties of a given polyhedron’s faces, including the relative orientations
of two adjacent faces, would have important implications for a capsid’s overall surface
structure. In this vein, some other approaches have applied viral tiling methods using multiple
types of shapes [19]. However, a polyhedral framework that uses only one type of subunit
shape possesses an appealing simplicity that increases its potential for future use in structure
determination applications.

In an attempt to develop such an applicable yet simple polyhedral framework, we first revisit the
specific exceptions to the Caspar–Klug theory discussed above and note that it is not adequate
to describe these exceptional capsid structures using triangular units. However, triangular units
are still commonly used to represent nearly all capsids, save for a few specific models that have
used trapezoids, and even these use underlying triangular scaffolds [20–22]. We consider
herein some specific aspects of capsid structure that are not sufficiently described by triangles
alone, focusing particularly on the orientations of intersubunit interfaces. Motivated by these
observations and the limitations of the original Caspar–Klug theory, we first develop a broad
method of investigating viral capsid structures in terms of their specific associated icosahedral
polyhedra that can be applied both to structures that follow the triangulation number rules and
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those that do not. We apply this approach to propose specific, simple solutions that provide
explanations for capsid structures that are ‘forbidden’ in the view of, or cannot be explained by,
the triangulation number theory, including those of the L-A virus and viruses of the papilloma-
polyoma type. Based on these specific analyses, we propose a general framework for
describing capsid structures using pentagonal units instead of triangles, which accounts for
intrinsic capsid chirality and provides a more complete characterization of intersubunit inter-
faces. We suggest that this general approach can be applied to offer new insight into the details
of capsid geometry, regardless of whether they follow the Caspar–Klug triangulation rules.

Polyhedral Framework for Describing Virus Capsid Structure
Though the concept of triangulation numbers is undoubtedly useful in categorizing capsid
structures, a triangulation number alone does not fully characterize the geometry of a given viral
capsid. Namely, it alone does not define the orientation of intersubunit interfaces of the capsid
and the relationship between subunits in the complete assembly. These interface orientations
are critically relevant in order to accurately understand mAb binding to conformational epitopes,
which is important both for mAb design and effective vaccine design in the context of such
epitopes [23–25]. In order to ensure a complete characterization of such interfaces and the
structure as a whole, a given capsid structure's associated polyhedron must be taken into
account.

Nearly all of the icosahedral polyhedra that correspond to viral capsids can be classified as
hexecontahedra, meaning polyhedra with 60 faces (see Figure S1 in the supplemental infor-
mation online). There are only a few such spherical shells, namely the four Catalan-type solids:
the pentagonal and deltoidal hexecontahedra, the pentakis dodecahedron, and the triakis
icosahedron [26]. In addition, the rhombic triacontahedron, which has 30 faces, can be thought
of as a hexecontahedron if each of the rhombic faces is divided into two triangular faces. These
hexecontahedra all possess icosahedral symmetry but differ in the shapes and orientations of
their faces about the 5-3-2 symmetry axes.

Different viruses with the same triangulation number can still exhibit very different surface
geometries depending on the hexecontahedron that they most closely resemble. The main
distinction between these icosahedral polyhedra is the degree of curvature on the five-fold and
three-fold axes. In the deltoidal hexecontahedron, the geometry on the three-fold axis is nearly
planar. In this case, essentially all of the curvature is contained in the five-fold axes. However, in
the triakis icosahedron, the triangular faces about the three-fold axes are not perpendicular to
the three-fold axis, giving that axis some curvature, which is not present in the deltoidal
hexecontahedron. An example of this would be the hepatitis A virus capsid structure, which
has the appearance of a facetted triakis icosahedron [27].

The other two hexecontahedra, the pentakis dodecahedron and the rhombic triacontahedron,
are also distinguished by differing degrees of curvature, this time on the two-fold axes. The
rhombic triacontahedron is completely planar on the two-fold axes, while the pentakis dodeca-
hedron is bent inwards. This difference at the two-fold axes does affect the curvatures about
the three-fold and five-fold axes as in the previous case, but not to as great a degree. For
example, flaviviruses such as Zika and Dengue exhibit a 'herringbone' pattern of dimers that
requires a planar geometry on the two-fold axis [28]. The dimers would have to bend unnaturally
to accommodate a pentakis dodecahedron, which is more appropriate for other viruses such
as picornaviruses (Figure S2) [29].

All of the viruses discussed above are classified as T=3 or pseudo T=3 capsids, but it is clear
that they are still very structurally distinct. In this way, the association of viral capsid structures
with appropriate icosahedral polyhedra reveals important geometric information that is not
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accounted for by the triangulation number theory. This suggests the possibility that structures
that do not follow the triangulation number rules might instead be better explained in terms of an
icosahedral polyhedral framework. We show that in fact this approach does provide feasible
solutions to the current structural puzzles of the L-A virus and papilloma-polyoma type virus
capsids, where the triangulation number theory fails to provide rational explanations or a
solution.

Polyhedral Framework Applied to the L-A Virus Capsid
The L-A virus capsid consists of 120 subunits and therefore immediately cannot be explained
by the triangulation number theory, since this corresponds to the forbidden T=2 case.
However, there does exist an icosahedral polyhedron scaffold that is able to accurately
describe this structure. As noted in the previous section, our search space of possible
icosahedral polyhedron scaffolds for modeling virus capsids is restricted to the hexecontahe-
dra. A particularly distinctive feature of the L-A virus capsid is its noticeably chiral assembly. This
chirality is manifested in the relative ‘twist’ between groups of subunits around adjacent five-
fold symmetry axes (Figure 1). This ‘twist’ and the resulting chirality require that any polyhedron
that could potentially model this capsid must also possess intrinsic chirality. The pentagonal
hexecontahedron is the only hexecontahedron that is chiral, making it the only suitable choice
for the L-A virus structure.

The pentagonal hexecontahedron has an asymmetric unit that is an irregular pentagon, defined
by two lengths and two angles (Figure S3). Because of this irregularity, the full polyhedron exists
in two forms, or 'enantiomorphs' (Figure S4). From the location of the five-fold, three-fold, and
two-fold symmetry axes in relation to the crystal structure data, the dimensions of an appro-
priate pentagonal asymmetric unit can be calculated (Figure S5). This pentagon shape closely
fits the geometry of two adjacent subunits of the L-A virus capsid, since three of its edges align
with interviral protein interfaces (Figure 2). This close fit, in addition to appropriately describing
the chirality, further supports the suitability of the pentagonal hexecontahedron in describing
the L-A virus capsid structure (Figure 3, Key Figure). In this way, the polyhedral approach is able
to provide a rational model for a capsid structure that cannot be explained in terms of Caspar–
Klug theory and triangulation numbers.

Figure 1. The Chiral Nature of the L-A Virus Capsid.
A visualization of the actual crystal structure data is shown on the right (PDB ID: 1M1C). An artificial mirror image
(‘enantiomorph’) is shown on the left. The orientation of the two units outlined in red shows that the capsid assembly
scaffold (indicated by the green colored subunits) possesses a definite handedness.
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Polyhedral Framework Applied to the Papilloma-Polyomavirus Capsid
The pentameric capsomers of the papilloma-polyoma type viruses are located at the vertices of a
T=7 icosahedral lattice, with a total of 72 occupied locations. This lattice possesses an intrinsic
handedness, so at a first glance it seems that the pentagonal hexecontahedron could also be
suitable for describing a structure based on the T=7 lattice, again using the chirality argument.
However, in the case of the polyomavirus structure, there are a few issues that make this particular
pentagonal tiling unsuitable. In this case, to convert from the polyhedron model to the actual
capsid, the vertices of the polyhedron would have to be ‘decorated’ with the VP1 pentameric
capsomers. A pentagonal hexecontahedron has 92 vertices, so only 72 of these would be
decorated with subunits or capsomers in order to reflect the polyomavirus structure. Therefore,
each individual pentagon unit would need to be decorated at exactly four vertices. Due to the
geometry of the pentagon unit of the pentagonal hexecontahedron, it is impossible to feasibly
satisfy this decoration requirement. Let the vertices of the pentagon be labeled O, A, B, C & D
(Figure S3). It would be possible to have a capsomer at O, A, and B, leaving C and D undecorated,
but this would not add up to a total of 72 capsomers in the total assembly. Decorating either C or D
(but not both) would give the correct total, but would not be feasible in terms of that one short
intercapsomer distance. This problem can be fixed by considering an alternate irregular pentagon
unit, which can be derived from first going back to the dual of the pentagonal hexecontahedron,
the Archimedean solid known as the snub dodecahedron (Figure S6).

From the snub dodecahedron, a solid or shell can be created that uses this geometry as a
scaffold but ultimately consists of a spherical tiling of only one shape: an asymmetric irregular
pentagon (Figure 3). Overall, the construction fixes the position of the true five-fold symmetry
vertices and also adds a vertex on each three-fold axis. This vertex can remain undecorated
because of its proximity to its two adjacent ones, since it would not be possible to decorate
both C and D or B and D (Figure S7A). Therefore, if each vertex O, A, B, and C is decorated with
a viral pentamer unit, the full assembly would include 72 as observed. In this way, the
asymmetric pentagonal hexecontahedron would perfectly describe the geometry of the poly-
omavirus capsid.

Figure 2. Pentagonal vs. Triangular Tilings.
Both images show projections of the L-A virus crystal structure viewed along a three-fold symmetry axis. The appropriate
right-handed pentagonal tiling is shown on the left outlined in red, with the dashed line connecting the adjacent five-fold
axes. A triangular tiling subdivided into deltoids is shown on the right, which does not capture the chiral twist of the viral
subunits about the three-fold axis. The pentagonal tiling also places the two-fold axes along edges instead of at vertices,
which affects the orientation of the interface at that position. The calculated dimensions of the appropriate pentagons are
given in Figure S5.
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Some lengths and angles can be varied, which generalizes to a family of such asymmetric
irregular pentagons derived from the snub dodecahedron. In fact, these pentagons can be
thought of as a combination of three triangles: two isosceles ones and the center triangle that
can be of any type (Figure S7B). This results in a maximum of four different intercapsomer
distances. Any capsid arrangement of only pentamers can be described in terms of these four
distances, and therefore any such arrangement can be described in terms of one of these
asymmetric pentagons.

Regardless of the exact geometry of the asymmetric pentagon, the viral monomer vertex
decoration will be the same in every case in order to ensure 72 pentameric capsomers (360
monomer viral protein units). In each pentagon, vertices O and C will be decorated with a single
viral monomer since they are the smallest angles, vertices A and B will be decorated with two
monomers since they have larger angles, and vertex D is undecorated for reasons described

Key Figure

Chiral Pentagonal Frameworks Describe the L-A Virus and Polyoma-
virus Capsids.

Figure 3. The top images show how the pentagonal hexecontahedron is able to accurately capture the geometry of the L-
A virus capsid (PDB ID: 1M1C) by superimposing two appropriate pentagons (outlined in red) around a two-fold axis of the
assembly. Similarly, the bottom images show two units of the asymmetric pentagonal hexecontahedron superimposed on
the polyomavirus capsid (PDB ID: 1SIE). In both cases, the pentagons capture the chirality and outline key viral protein
subunit interfaces, thereby providing a more fitting description than triangles. The calculated dimensions of the appropriate
pentagons are given in Figures S5 and S8.
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above, namely that the BD/CD distance is too short to support three capsomers at B, C, and D
(Figure 4). If the decoration is done in this way, then there will always be five monomers at every
point where three pentagons meet in the 3D assembly (at the vertices A, B, and C), except at
the threefold axes (vertex D).

From the available crystal structures of the polyomavirus, papillomavirus, and simian virus 40,
the four relevant distances can be extracted and an asymmetric pentagon tiling can be
constructed for each case. These capsids are very similar in structure, so it is not surprising
that they yield very similar asymmetric pentagons. For the polyomavirus, using the crystal
structure, we found that an asymmetric pentagon can be obtained by connecting the appro-
priate capsomers and raising the true five-fold vertex slightly (by about 10 Å) in order to put it in
the same plane as the other three decorated vertices (Figure 3) [30]. A similar method can be
applied to the crystal structures of the papillomavirus and simian virus 40 [31,32]. Each
pentagon has slightly different relative dimensions, but in every case the pentagon assembly
is able to describe the observed geometry (Figure S8).

The Pentagonal Polyhedral Framework and Intrinsic Capsid Chirality
The two examples presented above are specific applications of the icosahedral polyhedral
framework that result in solutions involving pentagonal subunits. An important facet of this
pentagonal polyhedral framework is its ability to capture intrinsic capsid chirality. Chirality in
virus capsids originates from the chirality of amino acids, as is the case with any protein
complex. In the case of virus capsids, the overall chirality is additionally manifested by the
orientations of viral subunits, as illustrated for example in Figure 1. We have shown that, in the

(A) (B)

O

AB

D

C

Figure 4. An Asymmetric Pentagon Describes the Polyomavirus Capsid.
(A) A pentagonal asymmetric unit with dots representing the locations of monomer viral protein units. Vertices are labeled
O, A, B, C, and D to distinguish the different types of decorations observed (one, two, or zero monomer units). (B) The
asymmetric pentagonal assembly superimposed on the 7d icosahedral lattice (adapted from Rayment et al. [33]) along
with polyomavirus capsomers (not to scale) in the appropriate orientations. The white pentamers fall on the true five-fold
axes, while the colored ones fall on the pseudo five-fold axes. Other symmetry axes are denoted by red symbols. The
calculated dimensions of the appropriate pentagons are given in Figure S8.
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particular case of the L-A virus, a tiling of triangles or deltoids is an inappropriate fit for the
structure because it is impossible for such shapes to capture any sort of chiral assembly
manifested by the subunit orientations (Figure 2). The only way to appropriately capture this
chirality is to use variations of a pentagonal framework, which introduces the required asym-
metries while preserving the overall icosahedral symmetry. The fact that all virus capsids are
chiral in some way suggests that this approach can be readily applied to virtually any capsid. In
other words, using chiral assembly scaffolds such as the pentagonal hexecontahedron and
pentagonal units as structural references instead of achiral scaffolds and triangular units could
lead to more accurate and complete structural information of any virus, since the latter
approaches ignore this important feature of capsid structure.

Concluding Remarks
The chiral pentagonal polyhedral framework described here is able to address many of the gaps
that remain in the current triangulation number theory. It can be applied to specific exceptions
to the theory to offer new, simple solutions, and also has the potential for more general
applications due to its ability to capture intrinsic capsid chirality. This framework, in conjunction
with the existing theories, can be used to offer a more complete description of capsid
substructure assemblies and intersubunit interfaces, since many of the pentagonal unit edges
fall along important such interfaces. Instead of solely relying on triangular subunits, pentagonal
subunits along with the appropriate polyhedral scaffolds may be used as references to solve
complete three-dimensional capsid structures and could therefore yield different relative atomic
coordinates between subunits (see Outstanding Questions). A deeper understanding of viral
structural information will be invaluable for the development of new antiviral approaches.
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Outstanding Questions
Will structure-solving methods that rely
on a pentagonal rather than triangular
framework yield different solutions that
will have biological relevance?

How can this chiral pentagonal frame-
work be implemented in order to solve
viral capsid structures using electron
cryo-microscopy?

What are the implications of this chiral
pentagonal framework when applied
to all virus capsids, or even all caged
proteins?
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Figure S1. Catalan polyhedra. a) pentakis dodecahedron b) triakis icosahedron c) rhombic 
triacontahedron d) deltoidal hexecontahedron e) pentagonal hexecontahedron. Five-fold, three-fold, 
and two-fold symmetry axes are labeled with pentagons, triangles, and ovals respectively.  

A)                             B)                            C)          

D)                             E)  
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Figure S2. Viral Protein Subunit Interfaces. This figure illustrates the differences 
in the viral protein subunit interfaces in two capsids that are both designated as 
pseudo T=3, a) dengue virus (PDB ID: 1K4R) and b) enterovirus 71 (PDB ID: 

3VBU). The arrows lie along a two-fold symmetry axis in each case, pointing away 
from the inside of the capsid. In a), the geometry (indicated by the dashed white 
line) is flat and somewhat convex, while in b) the geometry is concave, kinked 

about the two-fold axis. In this way, two capsids characterized by the same 
triangulation number exhibit very different inter-protein interfaces. 

(a) 

(b) 



 
 

Figure S3. Building block of the pentagonal hexecontahedron. This pentagon is 
symmetric, and possesses only two different lengths and angles. 

O 

A B 

D C 

Figure S5. The L-A Virus Pentagon. The dimensions of an 
appropriate pentagon (as calculated from the L-A virus 

atomic coordinates in PDB: 1M1C) that will tile in 3D to 
form a pentagonal hexecontahedron that describes the 

whole capsid. 
 

Figure S4. Pentagonal Hexecontahedron. The pentagonal hexecontahedron in its 
two chiral forms, laevo shown on the left and dextro on the right. Two units related 
by two-fold symmetry are outlined in red, with the other symmetry axes notated with 

orange symbols: pentagons for five-fold axes, triangles for three-fold axes, and 
ovals for two-fold axes. Caspar & Klug [S1] include a figure that illustrates a 

similar pentagonal solid, although they do not refer to this polyhedron specifically. 
They use this figure solely to illustrate the geometric fact that units that have no 

individual symmetry can still be assembled in 3D to create a polyhedron that 
possesses overall icosahedral symmetry. They do not actually apply it to virus 

capsid structures, which is what we show in the main text. 



 
 
 
 
 

 
 

 A) 

Figure S7. The Asymmetric Pentagonal Unit. a) The asymmetric irregular pentagon derived 
explicitly from the snub dodecahedron. b) Three types of asymmetric irregular pentagons. All have two 

isosceles triangles (marked in black and blue), but the middle triangle can be of any type. The 
maximum number of unique distances between vertices O, A, B, and C is four, as illustrated by the 

different colored line segments in the scalene triangle case (black, red, orange, and yellow).   
 

A) B) 

Figure S8. Asymmetric Pentagon 
Dimensions. Three asymmetric 

pentagons generated from crystal 
structure data of polyomavirus, 

papillomavirus, and SV40 (from left 
to right), using atomic coordinates 
deposited in PDB IDs: 1SIE, 3J6R, 
and 1SVA. These will tile in 3D to 
form an asymmetric pentagonal 

hexecontahedron that describes the 
whole capsid in each case.  

Figure S6. Asymmetric Pentagonal Hexecontahedron. The creation of a right-handed 
asymmetric pentagonal hexecontahedron (right) starting from the snub dodecahedron (left). An 
intermediate solid is shown in the center, which shows the addition of a vertex on the three-fold 
axes above the red triangles in the snub dodecahedron. Note also that the snub dodecahedron is 

the dual of the pentagonal hexecontahedron (Figure S4). 
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